3. Kiliç N, Oktay H. Effects of rapid maxillary expansion on nasal breathing and some naso-respiratory and breathing problems in growing children: a literature review. Int J Pediatr Otorhinolaryngol 2008;72:1595–1601.
https://doi.org/10.1016/j.ijporl.2008.07.014.
4. Lee MJ, Kim JG, Yang YM, Baik BJ. Effects of mouth breathing on facial skeletal morphology. J Korean Acad Pediatr Dent 2012;39:339–347.
5. Kim NW, Lee DW, Kim JG, Yang YM. Three Dimensional Skeletal, Dentoalveolar and Airway Space Changes after Slow Maxillary Expansion in Children. J Korean Acad Pediatr Dent 2023;50:155–167.
https://doi.org/10.5933/JKAPD.2023.50.2.155.
8. Buccheri A, Dilella G, Stella R. Rapid palatal expansion and pharyngeal space. Cephalometric evaluation. Prog Orthod 2004;5:160–171.
11. Kundu PK, Cohen IM, Dowling DR. Fluid mechanics. In: Hu HH. eds. Computational fluid dynamics. 5th ed. Elsevier, 2012:421–472.
12. Faizal W, Ghazali NN, Khor C, Badruddin IA, Zainon MZ, Yazid AA et al. Computational fluid dynamics modelling of human upper airway: A review. Comput Methods Programs Biomed 2020;196:105627.
https://doi.org/10.1016/j.cmpb.2020.105627.
13. Bailie N, Hanna B, Watterson J, Gallagher G. An overview of numerical modelling of nasal airflow. Rhinology 2006;44:53–57.
14. Suga H, Iwasaki T, Mishima K, Nakano H, Ueyama Y, Yamasaki Y. Evaluation of the effect of oral appliance treatment on upper-airway ventilation conditions in obstructive sleep apnea using computational fluid dynamics. CRANIO
® 2021;39(3):209–217.
https://doi.org/10.1080/08869634.2019.1596554.
15. Kim HH, Suh SH, Choi JY, Kim TY. Flow analyses of upper airway before and after maxillomandibular advancement surgery for obstructive sleep apnea patient. Transactions of the KSME B 2015;39:443–448.
https://doi.org/10.3795/KSME-B.2015.39.5.443.
16. McNamara JA, Brudon WL. Orthodontic and orthopedic treatment in the mixed dentition. 1st ed. Needham Pr, 1993.
17. Chervin RD, Hedger K, Dillon JE, Pituch KJ. Pediatric sleep questionnaire (PSQ): validity and reliability of scales for sleep-disordered breathing, snoring, sleepiness, and behavioral problems. Sleep Med 2000;1:21–32.
https://doi.org/10.1016/S1389-9457(99)00009-X.
19. Savini S, Ciorba A, Bianchini C, Stomeo F, Corazzi V, Vicini C et al. Assessment of obstructive sleep apnoea (OSA) in children: an update. Acta Otorhinolaryngol Ital 2019;39:289–297.
https://doi.org/10.14639/0392-100x-n0262.
21. Proffit WR, Fields H, Larson B, Sarver DM. Contemporary orthodontics. 6th ed. Amsterdam: Elsevier, 2021.
22. Chang KK, Kim KB, McQuilling MW, Movahed R. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery. Am J Orthod Dentofacial Orthop 2018;153:895–904.
https://doi.org/10.1016/j.ajodo.2017.08.027.
23. Ormiskangas J, Valtonen O, Kivekäs I, Dean M, Poe D, Järnstedt J et al. Assessment of PIV performance in validating CFD models from nasal cavity CBCT scans. Respir Physiol Neurobiol 2020;282:103508.
https://doi.org/10.1016/j.resp.2020.103508.
25. Mo SS, Ahn HT, Lee JS, Chung YS, Moon YS, Pae EK et al. Morphological characteristics of the upper airway and pressure drop analysis using 3D CFD in OSA patients. Korean J Orthod 2010;40:66–76.
https://doi.org/10.4041/kjod.2010.40.2.66.
26. Moreddu E, Meister L, Philip-Alliez C, Triglia JM, Medale M, Nicollas R. Computational fluid dynamics in the assessment of nasal obstruction in children. Eur Ann Otorhinolaryngol Head Neck Dis 2019;136:87–92.
https://doi.org/10.1016/j.anorl.2018.11.008.
27. Xavier R, Menger DJ, de Carvalho HC, Spratley J. An overview of computational fluid dynamics preoperative analysis of the nasal airway. Facial Plast Surg 2021;37:306–316.
https://doi.org/10.1055/s-0041-1722956.
28. Downing J, Ku D. Effects of frictional losses and pulsatile flow on the collapse of stenotic arteries. J Biomech Eng 1997;119:317–324.
https://doi.org/10.1115/1.2796096.
29. Minami AY, Sugiyama T, Iwasaki T, Yamasaki Y. Primary site identification in children with obstructive sleep apnea by computational fluid dynamics analysis of the upper airway. J Clin Sleep Med 2020;16:431–439.
https://doi.org/10.5664/jcsm.8224.
30. Tan J, Han D, Wang J, Liu T, Wang T, Zang H et al. Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model. Eur Arch Otorhinolaryngol 2012;269:881–889.
https://doi.org/10.1007/s00405-011-1771-z.
31. Chen S, Wang J, Xi X, Zhao Y, Liu H, Liu D. Rapid maxillary expansion has a beneficial effect on the ventilation in children with nasal septal deviation: A computational fluid dynamics study. Front Pediatr 2022;9:718735.
https://doi.org/10.3389/fped.2021.718735.
33. Iwasaki T, Saitoh I, Takemoto Y, Inada E, Kanomi R, Hayasaki H et al. Improvement of nasal airway ventilation after rapid maxillary expansion evaluated with computational fluid dynamics. Am J Orthod Dentofacial Orthop 2012;141:269–278.
https://doi.org/10.1016/j.ajodo.2011.08.025.